600.271 Automata & Computation Theory Second Mid-Semester Examination November 10, 2009 In-class, Closed Book Time: 1 hr, 15 minutes

I. (10 pts.) Design a context-free grammar for the language $\{a^ib^jc^k|\ i,j,k\geq 1,\ (i\neq j)\ {\rm or}\ (j=k\ {\rm and}\ i+j+k\ {\rm is}\ {\rm a}\ {\rm multiple}\ {\rm of}\ 3)\}$

II. (10 pts.) Establish the decidability of one of the following problems by designing an appropriate algorithm.

- Given a CFG G and 2 positive integers ℓ and h, $\ell < h$, is there an $x \in L(G)$ s.t. $\ell \le |x| \le h$?
- Given [M] and x, does dTM M halt on input x while utilizing no more than $|x|^2$ space?

III. (10 pts.) Design a Turing machine for computing the following function. $f(x,y,z) \ = \ (y,x+2z).$

IV. (10 pts.) Solve one of the following problems.

• Prove that the problem of given [M], to test whether for every $n \geq 1$ the dTM M halts on at least n/4 inputs $x, x \leq n$, and at most n/2 inputs $x, x \leq n$, is undecidable. (Hint: This problem is quite easy.)

In a PCP_1 problem, given (x_i, y_i) , for $i = 1, 2, \dots, n$, and a value k, to test whether there exist i_1, i_2, \dots, i_m s.t. $x_{i_1} x_{i_2} \dots x_{i_m} = y_{i_1} y_{i_2} \dots y_{i_m}$, and $k \in \{i_1, i_2, \dots, i_m\}$. In a PCP_{all} problem, given (x_i, y_i) , for $i = 1, 2, \dots, n$, to test whether there exist i_1, i_2, \dots, i_m s.t. $x_{i_1} x_{i_2} \dots x_{i_m} = y_{i_1} y_{i_2} \dots y_{i_m}$, and every $k, 1 \leq k \leq n$, is in $\{i_1, i_2, \dots, i_m\}$.

- Prove that $PCP_{all} \leq_T PCP_1$.
- Prove that $PCP_1 \leq_m PCP_{all}$. (Hint: This problem is hard.)