600.271 Automata & Computation Theory Second Mid-Semester Examination April 12, 2011

In-class, Closed Book Time: 1 hr, 10 minutes

I. (10 pts.) Design a context-free grammar for the language $\{xx^Ryy^R|\ x,y\in\{a,b\}^+,abb\ \text{is a substring of}\ x,\ \text{and}\ |y|\ \text{is odd}\}$

II. (10 pts.) Establish the decidability of one of the following problems by designing an appropriate algorithm.

- Given a CFG G, is there an $x \in L(G)$ such that |x| is even?
- Given $[M_1]$ and $[M_2]$, M_1 and M_2 being dfa language recognizers, is $L(M_1) \cap L(M_2)$ an infinite set?

III. (10 pts.) Design a Turing machine for computing the following function.

$$f(x,y,z) = \begin{cases} x + (y-z) & \text{if } y \ge z \\ x & \text{otherwise} \end{cases}$$

IV. (10 pts.) Solve one of the following problems.

- Prove the undecidablity of the following problem. Given CFGs G_1 and G_2 , is there an $x \in L(G_1) \cap (L(G_2))^R$, and |x| is even? (Hint: Reduce the Post Correspondence Problem to this problem.
- Recall that the Uniform Halting Problem (UHP) asks whether a given Turing machine halts on every input. Reduce the UHP to the problem of testing whether a given TM computes the identity function; i.e. the function f s.t. f(x) = x for every x.